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Transition from stable to unstable growth by an inertial force
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We introduce a simple growth model where the growth of the interface is affected by an inertial force and
a white noise. The magnitude of the inertial force is controlled by a constantp between 0 and 1. An inertial
force increases continuously from 0, asp does from 0 to 1. In our model, the interface starts growing from a
flat state. Whenp,pc , the interface width in our model increases continuously from 0 as time elapses, but it
saturates to a constant value in the long time limit. The saturated values of the interface width are the same for
different values ofp if p,pc . When p.pc , however, the interface width increases continuously without
saturation as time elapses. We explain via simple calculation how this interesting phenomenon occurs in our
model. We findpc50.5 from the calculation. This critical value is in excellent agreement with the critical value
pc50.50(1) found from the simulations of our model.
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The study of a growing interface in disordered media h
been a popular research topic for the last decade becau
relates to various physical systems such as interface gro
in porous media@1,2#, charge density waves under extern
fields @3–5#, fluid imbibition in paper@6#, driven flux motion
in type-II superconductors@7,8#, etc. It is well known that an
interface driven by an external driving forceF through ran-
dom media with weak disorder shows a pinning-depinn
~PD! transition atFc from a moving phase with nonzer
growth velocityV to pinned phase withV50. This PD tran-
sition is a continuous phase transition. But recent exp
ments @9–11# reported that a driven interface in a syste
with strong disorder shows a history-dependent depinn
transition, i.e., a first-order depinning transition. The int
face driven through strong disorder exhibits a spatially in
mogeneous plastic response without long-wavelength ela
restoring force, which happens in a system with weak dis
der. This inhomogeneous plastic response invokes the fi
order transition of a growing interface.

Marchetti, Middleton, and Prellberg@12# succeeded in
showing a first-order depinning transition from a simp
coarse-grained model, which mimics the interface growth
a system with strong disorder. Schwarz and Fisher@13# also
studied the critical behavior of the growing interface sho
ing a first-order depinning transition from a mean-fie
model. Above two studies are all about a driven first-ord
depinning transition in the presence of quenched disorde
the two studies,an inertial forcewas introduced to describ
a spatially inhomogeneous plastic response in the grow
interface. Both models were defined, in general, for fini
range interaction. The inertial force enters as a coupling
the local velocity of the system. However, the inertial for
enters as a global coupling to the mean velocity of the s
tem in the mean-field theory, which is formally valid in th
limit of infinite-range interaction. Recently these two wor
have been partially extended to finite dimensions@14#.

Recently Parket al. @15# showed from the simulations o
a simple growth model that a first-order depinning transit
occurs when the local inertial forcepLv̄ is involved in the
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interface growth in disordered media. Herev̄ is an average
velocity in a local region of a growing interface andL is the
system size. The growth model shows two phase transiti
a second-order and a first-order phase transitions, depen
on the value ofp. Whenp,pc , the model shows a second
order PD transition atFc(p). But whenp.pc , the model
shows a first-order PD transition atFc(p).

From recent studies@12,13,15#, one knows that an inertia
force changes dramatically the dynamical behavior o
growing interface in disordered media. Until now, howev
all studies about the effect of an inertial force have be
done for growing interfaces in disordered media. Therefo
it is very interesting to study the effect of an inertial force f
the growing interface in a homogeneous medium. To t
end, we study a simple growth model mimicking the inte
face growth in a homogeneous medium, where the growth
the interface is affected by an inertial force and a wh
noise.

Our model is defined on a (111)-dimensional lattice
with periodic boundary conditions~see Fig. 1!. In the model,
a particle is deposited at a chosen sitei on the substrate a
each time step. The deposited particle is allowed to diffus
one of its two nearest neighbor sites (i 21, i 11) to find the
position with the lowest height. We calculatenj (t) with j
51, . . . ,L for all sites in the system after the interfac
growth occurs.nj (t) is defined as follows:nj (t) is zero at
t50, i.e.,nj (0)50. If a particle is deposited at a sitei and
diffuses to a sitei 11 at time t, ni(t) and ni 11(t) become
ni(t21)11 andni 11(t21)11, respectively. Then, at ever
site excepti and i 11 in the system,nj (t) becomesnj (t
21)21. If a particle is deposited at a sitei and there is no
diffusion of the particle, thenni(t)5ni(t21)11 andnj (t)
becomesnj (t21)21 at every site excepti in the system.

The inertial force at a sitej is defined aspQ„nj (t)…,
wherep is a constant between 0 and 1. The unit-step funct
Q„nj (t)… can have 0 or 1 according to the value ofnj (t), i.e.,
Q„nj (t)…51 for nj (t)>0 and Q„nj (t)…50 for nj (t),0.
Each time we assign a new random number between 0 a
at every site on the interface and then calculate
©2003 The American Physical Society02-1
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FIG. 1. Schematic representations of the growth rule of our model.~a! The flat interface att50. At t51, the deposition of a particle
occurs at the site having the lowest minimum random number because ofnj (0)50 at every site in the system.~b! The interface att51. At
t52, the deposition of a particle occurs at a site having the lowest minimum number amongsj ’s. The deposited particle diffuses to the le
or right with 50% probability to find the position with the lowest height.~c! The interface att52. At t53, the deposition of a particle occur
at the site having the lowest minimum number amongsj ’s. The deposited particle diffuses to the left.
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sj5h j2pQ„nj~ t !… ~1!

at every sitej in the system. Hereh j means a random num
ber assigned at a sitej. Each time a particle is deposited
the site having the lowest minimum number amongsj ’s in
the system. Asp increases from 0 to 1, the deposition of
particle occurs more often at the site where the depositio
diffusion of a particle occurred just before.

Whenp50, the growth rule of our model is the same
the Family model@16#. It is known that the dynamics of th
Family model can be well described by the Edward
Wilkinson ~EW! equation@17#

]h~x,t !

]t
5n¹2h~x,t !1h~x,t !, ~2!

whereh(x,t) denotes the height of the interface at positionx
and timet. n¹2h(x,t) describes the smoothening effect
the interface tension.h is a white noise witĥ h(x,t)&50
and^h(x,t)h(x8,t8)&52Ddd8(x2x8)d(t2t8). Hered8 de-
notes the substrate dimension.

The dynamics of the growing interface formed by the E
equation show a nontrivial scaling behavior in the interfa
width,

W~L,t !5K 1

Ld8 (
x

@h~x,t !2h̄~ t !#2L 1/2

, ~3!

whereh̄ denotes the mean height. The interface width sca
as

W~L,t !;H tb if t!Lz

Lz if t@Lz.
~4!

The exponentsz, b, and z are called the roughness, th
growth, and the dynamic exponent, respectively. These
ponents are related byzb5z.

The scaling exponents of the EW equation can be
tained easily by solving the equation directly@18#. The ob-
tained scaling exponents are
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, z52. ~5!

We carried out computer simulations of our model for t
system sizeL5512 by increasingp from 0 to 1. The numeri-
cal data were averaged over more than 200 configurati
We found that the interface width in our model saturates t
constant value forp,pc@50.50(1)# and t@Lz, but it in-
creases continuously without saturation forp.pc ~see Fig.
2!.

In order to obtain the growth exponent for our model, w
measure the time-dependent behavior of the interface w
W(L,t) starting from an initially flat interface. We plo
W(L,t) versus timet in double logarithmic scales in Fig. 2
When p50, the growth exponent is estimated asb
50.25(1). This value is in excellent agreement with th
expected from the EW equation. For 0,p,pc , we cannot

FIG. 2. The plot ofW(L,t) vs time t in double logarithmic
scales atp50.70, 0.60, 0.51, 0.49, and 0 from top to bottom for t
system sizeL5512. Inset: The plot ofW(L,t) vs timet just above
pc in double logarithmic scales atp50.5005, 0.5004, 0.5003
0.5002, and 0.5001 from top to bottom for the system sizeL
51024.
2-2
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measure the growth exponent because the interface w
does not show a straight line in the log-log plot fort!Lz

~see Fig. 2!. We also consider another growth exponentbs by
measuring the interface width from the saturated interf
instead of the flat interface. The growth exponent is m
sured asbs50.25(1) forp,pc ~see Fig. 3!. This value is in
good agreement with that obtained by solving the EW eq
tion. We found that the saturated values of the interfa
width are the same for differentp if p,pc . However, the
interface width increases withb51 without saturation for
p.pc . As shown in the inset of Fig. 2, the interface widt
start to increase continuously just abovepc . Similar dynami-
cal behavior was observed from the study of an inertial sa
pile model where the distribution of avalanche sizes w
studied instead of the interface roughening@19#.

In order to obtain the roughness exponent forp,pc , we
plot the saturated value ofW(L,t) versus the system sizeL
in double logarithmic scales. The obtained roughness ex
nent isz50.50(1) ~see the inset of Fig. 3!, which is in ex-
cellent agreement with the value expected from the E
equation.

We found from the simulations of our model thatnj (t) at
every site in the system has a negative value in the long t
limit for p,pc . If nj (t),0 at every site in the system, th
site where the deposition of a particle occurs is determi
only by a white noise without any affection of the inerti
force. In that case, the probability thatnj (t) becomesnj (t
21)11 is 1/L at every site in the system. But the probab
ity that nj (t) becomesnj (t21)21 is (L21)/L at every
site. In the limitL→`, therefore, the probability thatnj (t)
becomesnj (t21)21 is one at every site in the system
Therefore, it is impossible thatnj (t) becomes 0 or positive
for p,pc , since it has a large negative value in the limitL
→`. However, we found that, whenp.pc , nj (t) has a very
large positive value at a certain sitei and has a very large
negative value at every other site excepti in the system in

FIG. 3. The plot ofW(L,t) vs time t in double logarithmic
scales forp50.49 andL5512. W(L,t) was measured starting from
the saturated interface width. The guideline is forbs50.25. Inset:
The plot of the saturated value ofW(L,t) vs the system sizeL in
double logarithmic scales atp50.49. The system sizes areL
532, 64, 128, 256, 512, and 1024. The guideline is forz50.5.
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the long time limit. In other words, the deposition of a pa
ticle occurs repeatedly only at a certain sitei after some
initial growth if p.pc . If the deposition occurs successive
only at a sitei, then the value ofnj (t) becomes a very large
positive one at sitei, but becomes a very large negative o
at all other sites excepti in the system in the long time limit
In that case, the growth of the interface occurs only at th
sites (i 21,i ,i 11). The interface growth at the two sitesi
21, i 11 occurs because of the diffusion of a deposit
particle at sitei.

We can explain the above simulation results very well
simple calculation. Let us assume thatnj (t21) has a large
positive value at a sitei, but has a large negative value at a
other sites excepti in the system at timet21. The value of
ni(t) at time t can be obtained as follows:

ni~ t !5ni~ t21!1G~p,L !, ~6!

where G(p,L) is a function defined asG(p,L)51 for p
.h i and G(p,L)521 for p,h i in the limit L→`. If p
.h i , then si@5h i2pQ„ni(t21)…#,0. sj has a negative
value only at sitei and a positive value at all other site
except i. Therefore, the deposition of a particle at timet
occurs at sitei. ni(t) becomesni(t21)11 and nj (t) be-
comesnj (t21)21 at every site excepti 21, i, and i 11.
nk(t) with k5 i 21,i 11 becomesnk(t21)21 with prob-
ability 2/3 andnk(t21)11 with probability 1/3 because o
the diffusion of a deposited particle. But ifp,h i , sj at
every site includingi is positive. Then the probability for a
particle to be deposited at sitei becomes smaller and smalle
as the system sizeL increases. The probability becomes a
most 0 whenL→`. That is the reason why we defin
G(p,L)521 if p,h i and L→`. Now, we can calculate
the expectation value ofni(t), n̄i(t), as follows

n̄i~11t0!5n̄i~ t0!1Ḡ~p,L !,

n̄i~21t0!5n̄i~11t0!1Ḡ~p,L !,

A A A

n̄i~ t1t0!5n̄i~ t211t0!1Ḡ~p,L !, ~7!

whereḠ(p,L) means the expectation value ofG(p,L).
From Eq.~7!, we get

n̄i~ t1t0!5n̄i~ t0!1~ t21!Ḡ~p,L !, ~8!

where we assumed thatnj (t0) has a large positive value a
site i and has a large negative value at all other sites excei
in the system. One can easily find that the expectation va
of G(p,`) becomes 1 with probabilityp, and 21 with 1
2p. Therefore, the expectation value ofni(t1t0) can be
written as

n̄i~ t1t0!5n̄i~ t0!1~ t21!@p2~12p!#

5ni~ t0!1~ t21!~2p21!. ~9!
2-3
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When p,0.5, n̄i(t) always has a negative value for larget

although n̄i(t0) has a positive value. This result says th
n̄ j (t) at every site in the system becomes negative for lart
regardless of the initial value ofnj (t0). In that case, the
deposition of a particle occurs at a randomly selected site
the interface. The growth rule of our model is the same
that of the Family model after some initial growth ifp
,pc . Hence, the dynamics of the growing interface can
described well by the EW equation. The interface wid
saturates to a constant value after some initial incre
When p.0.5, however,n̄i(t) always has a positive valu
and increases as time goes on.n̄ j (t) at every site excep
i in the system has a negative value and decreases con
ously as time goes on. In that case, the deposition of a
ticle occurs only at a sitei. The growth of the interface
occurs only at three sites (i 21,i ,i 11). Then the interface
width increases continuously without saturation. From t
calculation, we know that a phase transition from stable
unstable growth occurs atpc50.5. Here stable growth
means the growth where the interface width saturates
constant value after some initial increase. On the other h
unstable growth means the growth where the interface w
increases continuously without saturation. The critical po
obtained from our simple calculation is in excellent agre
ment with that found from the computer simulations of o
model.

We can also easily proveb51 for p.pc . The interface
b,

.

ev
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grows at only three sites (i 21,i ,i 11) in the long time
limit if p.pc . Then hj (t);t/3 at three sites j

5 i 21,i ,i 11, hj (t);const at other sites, andh̄(t);t/L
in the limit L→` and t→`. Therefore, the interface
width in 111 dimensions can be calculated

follows. W2(L,t)5(1/L)( j@hj (t)2h̄(t)#2;(1/L)@3(t/3
2t/L)21(k(const2t/L)2#;t2, wherekÞ i 21,i ,i 11.

In conclusion, we have introduced a simple growth mo
where the interface growth is affected by an inertial for
pQ(nj ) and a white noise. Whenp,pc , the interface width
increases continuously from 0 as time goes on, but satur
to a constant value whent@Lz. Then all saturated values o
the interface width for differentp are the same ifp,pc . But
when p.pc , the interface width increases continuous
without saturation as time goes on. We explained such n
trivial dynamical behavior of our model via simple calcul
tion. From the calculation, we found that there exists a cr
cal pointpc50.5 in our model. Forp,pc , the dynamics of
our model is described by the EW type growth. Then t
dynamics of the growing interface is not affected by the
ertial force. But forp.pc , the dynamics of the growing
interface is affected only by the inertial force without an
affection of the white noise. Therefore, the interface wid
grows continuously without saturation.
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