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Transition from stable to unstable growth by an inertial force
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We introduce a simple growth model where the growth of the interface is affected by an inertial force and
a white noise. The magnitude of the inertial force is controlled by a conpthetween 0 and 1. An inertial
force increases continuously from 0, gsloes from 0 to 1. In our model, the interface starts growing from a
flat state. Whemp<p., the interface width in our model increases continuously from 0 as time elapses, but it
saturates to a constant value in the long time limit. The saturated values of the interface width are the same for
different values ofp if p<p.. Whenp>p., however, the interface width increases continuously without
saturation as time elapses. We explain via simple calculation how this interesting phenomenon occurs in our
model. We findp.= 0.5 from the calculation. This critical value is in excellent agreement with the critical value
p.=0.50(1) found from the simulations of our model.
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The study of a growing interface in disordered media hasnterface growth in disordered media. Herds an average
been a popular research topic for the last decade becauseyi|ocity in a local region of a growing interface ahds the
relates to various physical systems such as interface growlfystem size. The growth model shows two phase transitions,
in porous medid1,2], charge density waves under externala second-order and a first-order phase transitions, depending
fields [3—5], fluid imbibition in paper[G], driven flux motion on the value op. When p< pc, the model shows a second-
in type-Il superconductor¥/,8], etc. It is well known that an  grder PD transition aF.(p). But whenp>p., the model
interface driven by an external driving foréethrough ran-  shows a first-order PD transition Bt(p).
dom media with weak disorder shows a pinning-depinning  From recent studiels2,13,19, one knows that an inertial

(PD) transition atF. from a moving phase with nonzero force changes dramatically the dynamical behavior of a
growth velocityV to pinned phase with=0. This PD tran-  growing interface in disordered media. Until now, however,

sition is a continuous phase transition. But recent experia|| studies about the effect of an inertial force have been
ments[9-11] reported that a driven interface in a systemdone for growing interfaces in disordered media. Therefore,
with strong disorder shows a history-dependent depinning js very interesting to study the effect of an inertial force for

transition, i.e., a first-order depinning transition. The inter-the growing interface in a homogeneous medium. To this
face driven through strong disorder exhibits a spatially inhoend, we study a simple growth model mimicking the inter-

mogeneous plastic response without long-wavelength elastigce growth in a homogeneous medium, where the growth of
restoring force, which happens in a system with weak disorthe interface is affected by an inertial force and a white
der. This inhomogeneous plastic response invokes the firsigise.

order transition of a growing interface. Our model is defined on a (11)-dimensional lattice

Marchetti, Middleton, and Prellber§l2] succeeded in with periodic boundary conditionsee Fig. 1 In the model,
showing a first-order depinning transition from a simplea particle is deposited at a chosen siten the substrate at
coarse-grained model, which mimics the interface growth ireach time step. The deposited particle is allowed to diffuse to
a system with strong disorder. Schwarz and Figi8f also  one of its two nearest neighbor sitds-(1, i +1) to find the
studied the critical behavior of the growing interface show-position with the lowest height. We calculatg(t) with j
ing a first-order depinning transition from a mean-field=1,... L for all sites in the system after the interface
model. Above two studies are all about a driven first-ordergrowth occursn(t) is defined as followsn;(t) is zero at
depinning transition in the presence of quenched disorder. lo=0, i.e.,n;(0)=0. If a particle is depos|ted at a sitend
the two studiesan inertial forcewas introduced to describe diffuses to a sitd+1 at timet, n;(t) andn;,,(t) become
a spatially inhomogeneous plastic response in the growing;(t—1)+1 andn;, ,(t—1)+ 1, respectively. Then, at every
interface. Both models were defined, in general, for finitesite excepti andi+1 in the systempn;(t) becomesn(t
range interaction. The inertial force enters as a coupling to-1)—1. If a particle is deposited at a sitand there |s no
the local velocity of the system. However, the inertial forcediffusion of the particle, them;(t)=n;(t—1)+1 andn, i(t)
enters as a global coupling to the mean velocity of the syshecomes: i(t—=1)—1 at every site exceptin the system
tem in the mean-field theory, which is formally valid in the  The mertlal force at a sitg is defined asp® (n;(t)),
limit of infinite-range interaction. Recently these two works wherep is a constant between 0 and 1. The unit- step function
have been partially extended to finite dimensiph4). @ (n;(t)) can have 0 or 1 according to the valuengft), i.e.,

Recently Parlet al. [15] showed from the simulations of (E)(n ()=1 for n;(t)=0 and @(n;(t))=0 for n;(t)<0.

a simple growth model that a first-order depinning transmonEaCh time we aSS|gn a new random number between 0and 1
occurs when the local inertial forgeLv is involved in the  at every site on the interface and then calculate
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FIG. 1. Schematic representations of the growth rule of our madelhe flat interface at=0. Att=1, the deposition of a particle
occurs at the site having the lowest minimum random number becaugg0df=0 at every site in the systertb) The interface at=1. At
t=2, the deposition of a particle occurs at a site having the lowest minimum number aroride deposited particle diffuses to the left
or right with 50% probability to find the position with the lowest heidla). The interface at=2. Att= 3, the deposition of a particle occurs
at the site having the lowest minimum number amsyig. The deposited particle diffuses to the left.

5= 7, PO (™;(1)) ® e ©)

at every sitg in the system. Herey; means a random num-
ber assigned at a sife Each time a particle is deposited at
the site having the lowest minimum number ama)g in
the system. A9 increases from 0 to 1, the deposition of a
particle occurs more often at the site where the deposition
diffusion of a particle occurred just before.

Whenp=0, the growth rule of our model is the same as
the Family mode[16]. It is known that the dynamics of the

sﬁmil*ﬁorr:]?g\?\ll) Zazatti)gn[vlv%” described by the Edwards- In order to obtain the growth exponent for our model, we
q measure the time-dependent behavior of the interface width
ah(x,t) W(L,t) starting from an initially flat interface. We plot
— =vV2h(x,t) + (x,1), (20 WI(L,t) versus timet in double logarithmic scales in Fig. 2.
When p=0, the growth exponent is estimated &
=0.251). This value is in excellent agreement with that
expected from the EW equation. FokK@<p., we cannot

We carried out computer simulations of our model for the
system sizé. =512 by increasing from 0 to 1. The numeri-

cal data were averaged over more than 200 configurations.
QAve found that the interface width in our model saturates to a
constant value fop<p.=0.50(1)] andt>L? but it in-
creases continuously without saturation for p. (see Fig.

ot

whereh(x,t) denotes the height of the interface at position
and timet. »V2h(x,t) describes the smoothening effect of

the interface tensiony is a white noise with 7(x,t))=0 ]

and(7(x,t) 7(x’,t"))=2D 8% (x—x') §(t—t'). Hered’ de- 10
notes the substrate dimension.
The dynamics of the growing interface formed by the EW 10* L
equation show a nontrivial scaling behavior in the interface
width,
=10
1/2 T
1 — =
W(L,t)={— h(x,t)—h(t)]?) , 3 >
( )<Ld§[< ) <>]> (3 Z 10
whereh denotes the mean height. The interface width scales 10" 4
as 5
tB If t<LZ 100 I:0 < : I2 ‘3 I4 I5 I6 I7 8
W(L,t)~ LE o if t>2 (4) 10° 100 100 100 100 100 100 10 10

t

The exponents, 8, andz are called the roughness, the  FiG. 2. The plot ofW(L,t) vs timet in double logarithmic
growth, and the dynamic exponent, respectively. These eXcales ap=0.70, 0.60, 0.51, 0.49, and 0 from top to bottom for the
ponents are related BB={. system sizé.=512. Inset: The plot ofV(L,t) vs timet just above

The scaling exponents of the EW equation can be obp_ in double logarithmic scales gh=0.5005, 0.5004, 0.5003,
tained easily by solving the equation direcf§8]. The ob-  0.5002, and 0.5001 from top to bottom for the system dize
tained scaling exponents are =1024.
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10" , i , - the long time limit. In other words, the deposition of a par-

b ticle occurs repeatedly only at a certain sitafter some

initial growth if p>p. . If the deposition occurs successively
_______ only at a sitei, then the value oh;(t) becomes a very large

0 -"0’5/ 10 ' | positive one at sit¢, but becomes a very large negative one

4 ) | at all other sites excepptin the system in the long time limit.

In that case, the growth of the interface occurs only at three

sites (—1,,i+1). The interface growth at the two sités

10" | M | —1, i+1 occurs because of the diffusion of a deposited

j | particle at sitd.

o | M . We can explain the above simulation results very well via

10° 10° simple calculation. Let us assume tmg{t—1) has a large

I positive value at a sitg but has a large negative value at all

10° other sites exceptin the system at timé—1. The value of

t n;(t) at timet can be obtained as follows:

-
-
-
-
-
-
-
-
-~
-

W(L,1)
w
i\
) |

FIG. 3. The plot ofW(L,t) vs timet in double logarithmic ni(t)=n;(t=1)+G(p,L), (6)
scales fop=0.49 and_=512. W(L,t) was measured starting from
the saturated interface width. The guideline is Bu=0.25. Inset: where G(p,L) is a function defined a&(p,L)=1 for p
The plot of the saturated value W¥(L,t) vs the system sizk in >n; and G(p,L)=—1 for p<z, in the limit L—~. If p
double logarithmic scales g0=0.49. The system sizes ale  >g;, thens[=»—pO(n;(t—1))]<0. s; has a negative
=32, 64, 128, 256, 512, and 1024. The guideline is{fer0.5. value only at sitei and a positive value at all other sites

excepti. Therefore, the deposition of a particle at tirhe

measure the growth exponent because the interface widtbccurs at sitd. n;(t) becomesn;(t—1)+1 andn;(t) be-
does not show a straight line in the log-log plot fe€L*  comesn;(t—1)—1 at every site exceft—1, i, andi+1.
(see Fig. 2 We also consider another growth exponggby  ny(t) with k=i—1,i+1 becomes(t—1)—1 with prob-
measuring the interface width from the saturated interfacebility 2/3 andn,(t—1)+ 1 with probability 1/3 because of
instead of the flat interface. The growth exponent is meathe diffusion of a deposited particle. But f<#;, s; at
sured agBs=0.25(1) forp<p. (see Fig. 3 This value is in  every site including is positive. Then the probability for a
good agreement with that obtained by solving the EW equaparticle to be deposited at sitdecomes smaller and smaller
tion. We found that the saturated values of the interfacas the system size increases. The probability becomes al-
width are the same for different if p<p.. However, the most 0 whenL—x. That is the reason why we define
interface width increases witg=1 without saturation for G(p,L)=—1 if p<# andL—~. Now, we can calculate
p>p.. As shown in the inset of Fig. 2, the interface widths the expectation value afi(t), n;(t), as follows
start to increase continuously just abgye Similar dynami-
cal behavior was observed from the study of an inertial sand- ni(1+1tg)=ni(te)+G(p,L),
pile model where the distribution of avalanche sizes was
studied instead of the interface roughenjig].

In order to obtain the roughness exponentgerp., we
plot the saturated value &¥(L,t) versus the system side
in double logarithmic scales. The obtained roughness expo-
nent is{=0.50(1) (see the inset of Fig.)3which is in ex- _ _ _
cellent agreement with the value expected from the EW ni(t+to) =ni(t—1+te) +G(p,L), (7)
equation. o

We found from the simulations of our model thg(t) at ~ whereG(p,L) means the expectation value G{p,L).
every site in the system has a negative value in the long time From Eq.(7), we get
limit for p<p. If n;(t)<O at every site in the system, the
site where the deposition of a particle occurs is determined ni(t+ty)=n;(te) + (t—1)G(p,L), (8
only by a white noise without any affection of the inertial
force. In that case, the probability thaf(t) becomesn;(t  where we assumed thai(t,) has a large positive value at
—1)+1is 1L at every site in the system. But the probabil- sijtej and has a large negative value at all other sites except
ity that n;(t) becomesn;(t—1)—1 is (L—1)/L at every jn the system. One can easily find that the expectation value
site. In the limitL—co, therefore, the probability that;(t) of G(p,*) becomes 1 with probability, and —1 with 1

becomesn;(t—1)—1 is one at every site in the system. —p_Therefore, the expectation value pf(t+t,) can be
Therefore, it is impossible that;(t) becomes 0 or positive \yritten as

for p<p., since it has a large negative value in the limnit

ni(2+to)=ni(1+1te)+G(p,L),

— 0. However, we found that, whgm>p, n;(t) has a very Fi(t""to):Hi(tO)"_(t_ D[p—(1-p)]
large positive value at a certain siteand has a very large
negative value at every other site excepn the system in =n;(tg) +(t—21)(2p—1). 9
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Whenp<0.5, nj(t) always has a negative value for large grows at only three sitesi{ 1j,i+1) in the long time
aIthoughn(t) has a positive value. This result says thatl'm't if p>pc. Then hj()~t/3 at three sites ]

n;(t) at every site in the system becomes negative for large = —1j,i+1, hj(t)~const at other sites, anti(t)~t/L
regardless of the initial value afj(ty). In that case, the N the fimit L—ce and t—oe. Therefore, the interface
deposition of a particle occurs at a randomly selected site owidth in  1+1 dimensions can be calculated as
the interface. The growth rule of our model is the same asollows. W2(L,t)=(1/L)=; [h;(t)— h(t)]2~(1/L)[3(t/3
that of the Family model after some initial growth jf —t/L)2+Ek(const—t/L)2]~t£ wherek#i—1;i,i+1.
<p.. Hence, the dynamics of the growing interface can be |n conclusion, we have introduced a simple growth model
described well by the EW equation. The interface widthwhere the interface growth is affected by an inertial force
saturates to a constant value after some initial mcreasq)@(n ) and a white noise. Whep<p,, the interface width
When p>0.5, however,n; (0 always has a positive value increases continuously from 0 as time goes on, but saturates
and increases as time goes cm(t) at every site except to a constant value wher>L? Then all saturated values of
i in the system has a negative value and decreases continilre interface width for differerp are the same ip<<p.. But
ously as time goes on. In that case, the deposition of a pawhen p>p., the interface width increases continuously
ticle occurs only at a sité. The growth of the interface without saturation as time goes on. We explained such non-
occurs only at three sites{ 1,i,i+1). Then the interface trivial dynamical behavior of our model via simple calcula-
width increases continuously without saturation. From thistion. From the calculation, we found that there exists a criti-
calculation, we know that a phase transition from stable tacal pointp.=0.5 in our model. Fop<p., the dynamics of
unstable growth occurs ap.=0.5. Here stable growth our model is described by the EW type growth. Then the
means the growth where the interface width saturates to dynamics of the growing interface is not affected by the in-
constant value after some initial increase. On the other hanertial force. But forp>p., the dynamics of the growing
unstable growth means the growth where the interface widtinterface is affected only by the inertial force without any
increases continuously without saturation. The critical pointaffection of the white noise. Therefore, the interface width
obtained from our simple calculation is in excellent agree-grows continuously without saturation.
ment with that found from the computer simulations of our  This work is supported in part by the Korea University
model. Grant, and also in part by the Ministry of Education through
We can also easily prove=1 for p>p.. The interface the BK21 project.
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